Disaster Advances


Indexed in SCOPUS, Chemical Abstracts Services, UGC, NAAS and Indian Citation Index etc.



Please donate Rs.7000/- per plant to WRA for our plantation drive of planting 50,000 trees for a better environment and oblige.



WRA Plantation - 40,000 trees grown on rocks and stones on barren rocky hillock "Keshar Parvat".






Estimation of Strength Properties of Some Rocks using Ball Mill Grinding Characteristics

Swamy V. Sahas, Kunar Mihir Bijay and Karra Ram Chandar

Disaster Advances; Vol. 18(5); 92-103; doi: https://doi.org/10.25303/185da920103; (2025)

Abstract
The strength properties of rocks namely uniaxial compressive strength and tensile strength are important in design and stability evaluation of various mining, geotechnical engineering and other rock engineering projects. Accurate determination of these properties relies on high-quality samples, but challenges like sample availability, preparation of sample, cost and time constraints have led to an increasing reliance on computational methods for prediction. In this context, an indirect approach is proposed for predicting rock strength properties, specifically the uniaxial compressive strength (UCS) and tensile strength (TS), using grinding characteristics of ball mill, an unconventional yet indirect approach. A predictive modelling using multivariate regression is carried out to estimate the relationship between UCS, TS and the grinding characteristics of ball mill.

The developed models demonstrated high accuracy with R² values of 0.93 for UCS and 0.96 for TS. Performance evaluation metrics showed an RMSE of 6.03 MPa and a VAF of 93.45% for UCS and an RMSE of 0.99 MPa and a VAF of 96.47% for TS. The validation was performed using experimental UCS and TS values of basalt rocks along with ball mill grinding test data. The error analysis revealed that UCS prediction error ranged from 5.1% to 11.61% while TS prediction error varied between 4.26% and 16.39%.