Disaster Advances


Indexed in SCOPUS, Chemical Abstracts Services, UGC, NAAS and Indian Citation Index etc.



Please donate Rs.7000/- per plant to WRA for our plantation drive of planting 50,000 trees for a better environment and oblige.



WRA Plantation - 40,000 trees grown on rocks and stones on barren rocky hillock "Keshar Parvat".






Experimentation and Statistical Prediction of Dust Emission in Iron Ore Mines using Supervised Machine Learning (Regression) Modelling

Pal Rajib, Vardhan Harsha, Amrites Senapati and Sahas Swamy V.

Disaster Advances; Vol. 18(5); 57-70; doi: https://doi.org/10.25303/185da57070; (2025)

Abstract
In India, the mine area and the processing plant of materials such as iron ore and coal will cause dust emissions. The fugitive dust emission creates a hazardous working environment for the workers. Dust emissions will cause pulmonary-related diseases to the workers and also to the people living in nearby areas of the mine. Environmental effects such as air pollution occur due to the dispersion of particulate matter over the permissible limit in the processing area. This study evaluates dust emission levels and air quality control measures in an iron ore mine (A), Karnataka, India. Fugitive and workplace dust sampling was conducted following DGMS and MoEF and CC guidelines, with a specific focus on PM10 and PM2.5 particulate matter. Measurements revealed that dust concentrations in several mining areas exceeded the permissible limit of 1200 μg/m³ as per the National Ambient Air Quality Standards (NAAQS, 2009).

To analyze and predict these concentrations, supervised machine learning (regression) modeling including linear, polynomial (order 2) and polynomial (order 2) models, was applied. The results indicated that a third-order polynomial regression model provided the best fit for predicting dust concentrations, demonstrating lower error. The study emphasizes the necessity of more robust dust suppression measures including installing a dry fog dust suppression system, to guarantee safe working conditions and adherence to environmental regulations, even in the face of efforts to reduce dust exposure.