Review Paper:

A critical review on the classification of helminths and their mode of transmission in human beings

Shobana R., Vijayalakshmi S. and Ranjitha J.*

CO₂ Research and Green Technologies Centre, Vellore Insitute of Technology, Vellore – 14, INDIA *ranjitha.j@vit.ac.in

Abstract

This review clearly states the classification of helminths and their mode of transmission in human-beings. Helminths are both hermaphroditic and bisexual species and classification is based on the external and internal morphology of egg, larval and adult stages.

Generally, helminths are classified into three major types based on their external shape and the host organ they inhabit. They are Flukes (Trematodes); Tapeworms (Cestodes) and Roundworms (Nematodes). This review clearly describes the impact of these types of helminths and their mode of transmission on humanbeings starting from children to adults. The classification and identification of helminths are dependent on numerous factors including body shape, body cavity, body covering, digestive tubing, sex and type of attachment organs.

Keywords: Helminths, Roundworms, Tapeworms, Trematoda, Platyhelminths, Acanthocephalans.

Introduction

Recently, helminths are great threat to human beings due to their health impact on humans. Helminths are worm likeparasites. The helminths are invertebrates characterized by elongated, flat or round bodies. The most important class of parasitic helminths contain: Nematodes (roundworms), cestoda (tapeworms), trematoda (flukes), platyhelminths (flatworms) and acanthocephalans (thorny headed worms). Helminths categorization and recognition are based on several aspects like external and internal morphology of egg, larval, adult stages, gender and nature of accessory organ. The parasitic worms interrupt the capability of a host cell to obtain and acquire sustenance.

Generally, mode of transmission is based on these three categories acetabulum, tegument, bothridia.

- (i) **Acetabulum**: Saucer shaped organ of attachment in worms like leech. It is a specialized sucker for parasitic adaption,
- (ii) **Tegument**: The outer body covering among the members of platyhelminths,
- (iii) **Bothridia**: A specialized attachment organ of an animal. It acts as adhesion device in parasitic worm. Helminths are huge, multicellular organisms, proficient to be glimpse to the

eye formerly in the grown-up stage of their life series. The multicellular eukaryotes and helminthes are capable of free-living or parasitic worms.

The adult stage of helminthes is unable to multiply in human beings and utilizes huge process of transference to make possible generative attainment. Parasites stay alive by obtaining food supplement from the host while troublemaking the hosts' nutrient absorption. The parasitic worms are frequently originated inside the intestine and these types are called intestinal parasites. They are capable to survive in mutually human being and animals.

Classification and mode of transmission: The categorization and recognition of helminths are reliant on abundant factors containing body form, digestive tubing, body cavity, body covering, sexual category and kind of attachment organs. The Platyhelminths (flatworms) contain both trematodes (flukes) and cestodes (tapeworms). Particularly, tapeworms are characterized using the above criteria and are organized in a segmented plane. They lack a body cavity and have a tegument body covering. Tapeworms lack a digestive tube and are hermaphroditic. They utilize suckers or bothridia and rostellum with hooks for an attachment organ. Trematodes are characterized by an unsegmented plane for body shape. They also lack a body cavity and have a tegument for body covering.

However, the digestive tube for trematodes ends in the cecum. Trematodes are hermaphroditic and utilize oral suckers, ventral suckers or acetabulum for attachment organs. The Nematodes are characterize by a body shape, it is cylindrical and has a body cavity. Its body covering is a cuticle and the digestive tube ends in the anus. The sex of nematodes is dioecious (distinct male and female organisms). Lastly, their attachment organs range from lips, teeth, filariform extremities and dentary plates ¹⁶.

Impact of Protozoan organisms on human beings: Protozoan are classified under the group of animal kingdom of the basal members. Protozoa are categatorized in both algal and fungal groups. Basically the protozoans are eukaryotic organism and it is structurally and functionly individual in cell. Generaly the protozoan organism groups are microscopic and some species are large in size and visible to naked eye. Protozoans are categorized into four groups.

Amoebae- Entamoeba histolytica Flagellates-Giardia lambila

Ciliates- Batantidium coli Sporoza- Plasmodium knowlesi

In protozoans some are free-living commonly in salt, fresh and brackish water. The common symptoms of protozoa are

episodic diarrhea, liver tenderness, malabsorption syndrome, stomach cramps and greasy stool. The drug used to treat the protozoan infection is metronidazole, paromonycin, nitazoxamide and tinidazole.

Fig. a: Roundworm

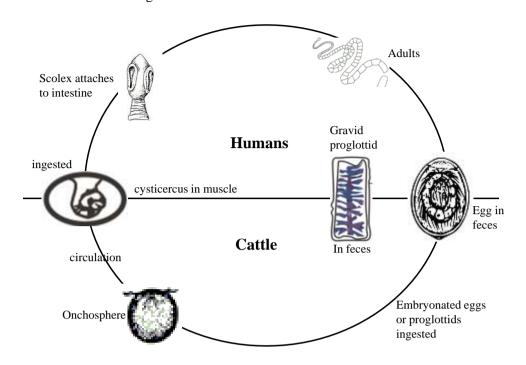
Fig. b: Tapeworm

Fig. c: Hookworm

Fig. d: Pinworm

Fig. e: Fluke

COMMON NAME OF	LATIN NAME	BODY PARTS	DIAGNOSTIC	MODE OF
ORGANISM	(SORTED)	AFFECTED	SPECIMEN	TRANSMISSION
Granulomatous amoebic	Acanthamoeba spp.	Eye, brain, skin	Culture	Contact lenses cleaned with
encephalitis				contaminated tap water
Acanthamoebakeratitis				
Granulomatous amoebic	Balamuthia mandrillaris	Brain, skin	Culture	Via inhalation or skin lesion
encephalitis				
Babesiosis	Babesia B. Divergens, B.	Red blood cells	Giemsa-stained thin	Tick bites, e.g. <i>Ixodes</i>
	Bigemina, B. Equi, B.		blood smear	scapularis
	Microfti, B. Duncani			
Balantidiasis	Balantidium coli	Intestinal mucosa	Stool (diarrhea -	Ingestion of cyst, zoonotic
			ciliated trophozoite;	infection acquired from pigs
			solid; stool- large cyst	(feces)
			with horseshoe	
			shaped nucleus)	
Blastocystosis	Blastocystis spp.	Intestinal	Direct microscopy of	Eating food contaminated
			stool	with feces from an infected
			(PCR, antibody) ^{2,16}	human or animal ^{8,10}
Cryptosporidiosis	Cryptosporidium spp.	Intestines	Stool	Ingestion of oocyst
				(sporulated), some species are
				zoonotic (e.g. Bovine fecal
				contamination)
Cyclosporiasis	Cyclospora cayetanensis	Intestines	Stool	Ingestion of oocyst thru
				contaminated food
Dientamoebiasis	Dientamoeba fragilis	Intestines	Stool	Ingesting water or food
				contaminated with feces
Amoebiasis	Entamoeba histolytica	Intestines (mainly	Stool (fresh diarrheic	Fecal-oral transmission of
		colon, but can cause	stools have amoeba,	cyst, not amoeba
		liver failure if not	solid stool contain	
		treated)	cyst)	

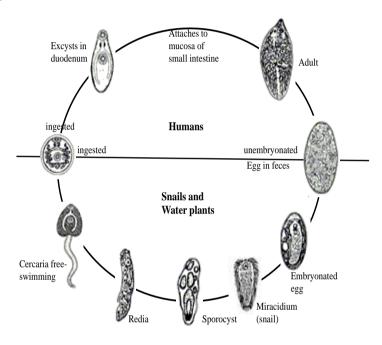

				Res. J. Chem. Environ.
Giardiasis	Giardia lamblia	Lumen of the small	Stool	Ingestion of water containing
		intestine		deer or beaver feces
Isosporiasis	Isospora belli	Epithelial	Stool	Fecal oral route – ingestion of
		cells of small		sporulated oocyst
		intestines		
Leishmaniasis	Leishmania spp.	Cutaneous, mucocut	Visual identification	Phlebotomus, Lutzomyia –
		aneous, or visceral	of lesion or	bite of several species of
			microscopic stain	phlebotomine sandflies
			with Leishman's or	
			Giemsa's stain	27 11 27 1
Primary amoebic	Naegleria fowleri	Brain	Culture	Nasal insufflation of
meningoencephalitis(PAM)				contaminated warm fresh
				water, poorly
				chlorinated swimming pools, hot springs, soil
Malaria	Plasmodium	Red blood cells,	Blood film	Anopheles mosquito
iviaiaria	falciparum(80% of cases),	liver	Dioou iiiii	Anophetes mosquito
	Plasmodium vivax, Plasm	livei		
	odium ovale curtisi,			
Rhinosporidiosis	Rhinosporidium seeberi	Nose, nasopharynx	Biopsy	Nasal mucosa came into
	1	, 1	1 3	contact with infected material
				through bathing in common
				ponds
Sarcocystosis	Sarcocystis	Intestine, muscle	Muscle biopsy	Ingestion of
	bovihominis,Sarcocystis			uncooked/undercooked
	suihominis			beef/pork
				with Sarcocystis sarcocysts
Toxoplasmosis	Toxoplasma gondii	Eyes, brain, heart,	Blood and PCR	Ingestion of
(Acute and Latent)		liver		uncooked/undercooked
				pork/lamb/goat
				with <i>Toxoplasma</i> bradyzoites, ingestion of raw milk
				with <i>Toxoplasma</i> tachyzoites,
				ingestion of contaminated
				water food or soil ^{17,21}
				with oocysts in cat feces that
				is more than one day old
Trichomoniasis	Trichomonas vaginalis	Female urogenital	Microscopic	Sexually transmitted infection
		tract (males	examination of	– only trophozoite form (no
		asymptomatic)	genital swab	cysts)
Sleeping sickness	Trypanosoma brucei	Brain and blood	Microscopic	Tsetse fly, day-biting fly of
			examination	the genus Glossina
			of chancre fluid,	
			lymph node aspirates,	
			blood, bone marrow	
Chagas disease	Trypanosoma cruzi	Colon, esophagus,	Giemsa stain – blood	Triatoma/Reduviidae –
		heart, nerves,		"kissing bug" insect vector,
		muscle and blood		feeds at night

Impact of Tapeworms on human-beings: Tapeworm is a class of (platyhemlninths) group and it is also called as flatworm. The subclass of parasite is Eucestoda. The mature tapeworm has head with short neck, scolex and segmented

body formed by proglottids. This parasite is mostly present in the human digestive tracts. The tapeworm infection is spread by eating uncooked meat of pork, fish and poor hygenic foods. The tapeworm infection is mostly caused by

animals. The animals are easily infected when they are grazing in pastures. The humans are affected by eating the contaminated animal meat and drinking contaminated water.

There is no symptom often the tapeworm. The indication of tapeworm infection is segments of worms moving on bowel movement.



COMMON NAME OF ORGANISM	LATIN NAME (SORTED)	BODY PARTS AFFECTED	DIAGNOSTIC SPECIMEN	MODE OF TRANSMISSION
Tapeworm – Tapeworm infection	Cestoda, Taenia multiceps	Intestine	Stool	Ingestion of fish
Diphyllobothriasis- tapeworm	Diphyllobothrium latum	Intestines, blood	Stool (microscope)	Ingestion of raw fresh water fish
Echinococcosis – tapeworm	Echinococcus granulosus, Echinococcus multilocularis, E. Vogeli, E. Oligarthrus	Liver, lungs, kidney, spleen	Imaging of hydatid cysts in the liver, lungs, kidney and spleen	As intermediate host, ingestion of material contaminated by feces from a carnivore; as definite host, ingestion of uncooked meat (offal) from a herbivore
Beef tapeworm	Taenia saginata	Intestines	Stool	Ingestion of undercooked beef
Cysticercosis-Pork tapeworm	Taenia solium	Brain, muscle, Eye (Cysts in conjuntiva/anterior chamber/sub- retinal space)	Stool, blood	Ingestion of undercooked pork
Bertielliasis	Bertiella mucronata, Bertiella studeri	Intestines	Stool	Contact with non-human primates
Sparganosis	Spirometra erinaceieuropaei			Ingestion of material contaminated with infected dog or cat feces (humans: dead-end host)

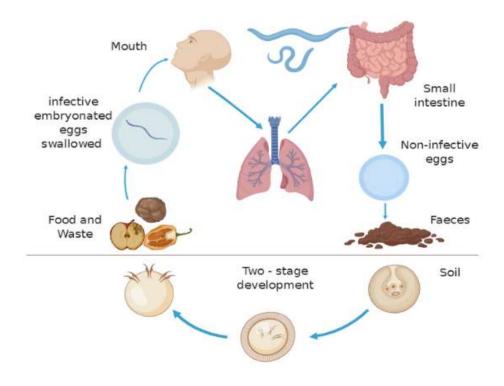
Impact of Flukes on human-beings: Fluke infects the human liver and other mammals. The name of the parasite is Fasciola heptica, commonly called liver fluke. The parasite causes a disease called Fasciolosis or Fascioliasis. This type of infection is categorized as tropical disease. The liver fluke is commonly distributed throughout the world and it was an important parasite in sheep and cattle. The fasciola heptica is common species of fluke category. It is largest one and the maximum length of the species is 30mm and width 13mm naturally. But it will grow upto 75mm length. The adult flukes are thick and fleshy, the shape of parasite is oval, reddish brown in colour. It look like a leaf-shaped, flat and the back is pointed (posterior) and the front is wide (anterior). It has a powerful part that is oral sucker and it is

small and cone-shaped projection. The fluke lays the egg it is golden brown in colour.

The liver fluke infection is not a communicable disease. The infection is spread by drinking contaminated water and eating infected fish in a freshwater. The indication of fluke infection is yellow-brown eggs present in stool. The Enzyme-linked immunosorbent assay (ELISA) test is also prescribed for the diagnosis of fluke infection. The major symptoms of fluke infection is weight loss, hives, fever, malaise and abdominal pain. The drug triclabendazole is used to treat fluke infection. Wash the fruits, vegetables properly before cooking.

Common name of organism	Latin name (sorted)	Body parts affected	Diagnostic specimen	Mode of Transmission
Clonorchiasis	Clonorchis	Gall bladder	Бресинен	Ingestion of under
	sinensis; Clonorchis	ducts and		prepared freshwater fish
	viverrini	inflammation of		
		liver		
Lancet liver fluke	Dicrocoelium dendriticum	Gall bladder		Ingestion of ants
Liver fluke – Fasciolosis ¹⁰	Fasciola hepatica, Fasciola	Liver, gall	Stool	Freshwater snails
	gigantica	bladder		
Fasciolopsiasis – intestinal fluke ¹¹	Fasciolopsis buski	Intestine	Stool or	Ingestion of infested water
			vomitus	plants or water
			(microscope)	(intermediate host:
				amphibic snails)
Metagonimiasis – intestinal fluke	Metagonimus yokogawai		Stool	Ingestion of undercooked
				or salted fish
Metorchiasis	Metorchis conjunctus			Ingestion of raw fish
Paragonimiasis, lung fluke	Paragonimus	Lungs	Sputum,	Ingestion of raw or
	westermani; Paragonimus		feces	undercooked freshwater
	africanus; Paragonimus			crabs crayfishes or other
	caliensis; Paragonimus			crustaceans
	kellicotti; Paragonimus			
	skrjabini; Paragonimus			
	uterobilateralis			

			1	
Intestinal schistosomiasis	schistosoma	Intestine, liver,	Stool	Skin exposure to water
	mansoni and schistosoma	spleen, lungs,		contaminated with
	intercalatum	skin, rarely		infected biomphalaria
		infects the brain		freshwater snails
Urinary blood fluke	schistosoma haematobium	Kidney, bladder,	Urine	Skin exposure to water
		ureters, lungs,		contaminated with
		skin		infected bulinus sp. Snails
Schistosomiasisby Schistosoma	Schistosoma japonicum	Intestine, liver,	Stool	Skin exposure to water
japonicum		spleen, lungs,		contaminated with
		skin		infected Oncomelaniasp.
				Snails
Asian intestinal schistosomiasis	Schistosoma mekongi	Intestine, liver,	Stool	Skin exposure to water
		spleen, lungs,		contaminated with
		skin		infected Neotricula
				<i>aperta</i> – freshwater snails
Swimmer's itch	Trichobilharzia	Intestine, liver,	Stool	Skin exposure to
	regenti, Schistosomatidae	spleen, lungs,		contaminated water (snails
		skin		and vertebrates)


Impact of Roundworms on human-beings: Round worms are commonly classified as Nematoda family. It is large in size and the normal growing length of the worm is 25 to 35cm. Ascaris are most common parasitic worms in humans. It cause infectious disease- Ascariasis. Round worm is milk white in colour but normally it presents as a reddish-yellow shade. The shape of the body is cylindrical, elongated and gradually tapering at both ends.

It has multicellular smooth insects and unsegmented bodies. Round worms mostly cause soil transmitted infections. Because the soil is contaminated by faeces, in that live eggs of parasitic worms are present. The round worm can live in small intestine up to 2 years and it can grow 12 to 14 inches long inside the human intestine. The worms reproduce

quickly, particularly the female worms will lay above 200,000 eggs in a day.

The parasitic infection of Round worm can be spread from person to another person through infected faeces. The major symptoms of this paraite infection are Vomiting, stomach pain, fever, worms in a bowel movement that look like earthworms, loss of appetite.

Round worms are treated by taking medicines like Albendazole, Mebendazole, Pyrantel. The infection is prevented by taking care of personal hygine. Fruits and vegetables are washed thoroughly and cooked well before eating. Wash yours hands with disinfectants. It will help to prevent the humans from soil transmitted parasitic infections.

Common name of organism or disease	Latin name (sorted)	Body parts affected	Diagnostic specimen	Mode of Transmission
Ancylostomiasis/Hookworm	Ancylostoma duodenale, Necator americanus	Lungs, small intestine, blood	Stool	Penetration of skin by L3 larva
Angiostrongyliasis	Angiostrongylus costaricensis	Intestine	Stool	Ingestion of infected faeces or infected slugs
Anisakiasis ¹²	Anisakis	Allergic reaction	Biopsy	Ingestion of raw fish, squid, cuttlefish, octopus
Roundworm – Parasitic pneumonia	Ascaris sp. Ascaris lumbricoides	Intestines, liver, appendix, pancreas, lungs, Löffler's syndrome	Stool	Ingestion of raw fish, squid, cuttlefish, octopus
Roundworm – Baylisascariasis	Baylisascaris procyonis	Intestines, liver, lungs, brain, eye	Stool	Stool from raccoons
Roundworm-lymphatic filariasis	Brugia malayi, Brugia timori	Lymph nodes	Blood samples	Arthropods
Dioctophyme renalis infection	Dioctophyme renale	Kidneys (typically the right)	Urine	Ingestion of undercooked or raw freshwater fish
Gnathostomiasis	Gnathostoma spinigerum, Gnathostoma hispidum	Subcutaneous tissues (under the skin)	Physical examination	Ingestion of raw or undercooked meat (e.g., freshwater fish, chicken, snails, frogs, pigs) or contaminated water
Halicephalobiasis	Halicephalobus gingivalis	Brain	Scanning	Soil-contaminated wounds
Loa loa filariasis, Calabar swellings	Loa loa filaria	Connective tissue, lungs, eye	Blood (Giemsa, haematoxylin, eosin stain)	Tabanidae – horsefly, bites in the day
Mansonelliasis, filariasis	Mansonella streptocerca	Subcutaneous layer of skin		Insect
River blindness, onchocerciasis	Onchocerca volvulus	Skin, eye, tissue	Bloodless skin snip	Simulium/black fly, bites during the day
Strongyloidiasis – Parasitic pneumonia	Strongyloides stercoralis	Intestines, lungs, skin (Larva currens)	Stool, blood	Skin penetration
Thelaziasis	Thelazia californiensis, Thelazia callipaeda	Eyes	Ocular examination	Amiota (Phortica) variegata, Phortica okadai
Toxocariasis	Toxocara canis, Toxocara cati	Liver, brain, eyes (Toxocara canis – visceral larva migrans, ocular larva migrans)	Blood, ocular examination	Pica, unwashed food contamined with <i>Toxocara</i> eggs, undercooked livers of chicken
Trichinosis	Trichinella spiralis, Trichinella britovi, Trichinella nelsoni, Trichinella nativa	Muscle, periorbital region, small intestine	Blood	Ingestion of undercooked pork
Whipworm	Trichuris trichiura, Trichuris vulpis	Large intestine, anus	Stool (eggs)	Accidental ingestion of eggs in dry goods such as beans, rice and various grains or soil contaminated with human feces

Elephantiasis – Lymphatic	Wuchereria bancrofti	Lymphatic	Thick blood smears	Mosquito, bites at night
filariasis		system	stained with hematoxylin.	

Impact of Other organisms on human-beings

Common name of organism or disease	Latin name (sorted)	Body parts affected	Diagnostic specimen	Transmission/Vector
Acanthocephaliasis	Archiacanthocephala, Moniliformis	Gastrointestinal	Faeces,	Ingestion of intermediate
	moniliformis	tract,	parasite	hosts
		peritoneum, eye	itself	
Halzoun syndrome	Linguatula serrata	Nasopharynx	Physical	Ingestion of raw or
			examination	undercooked lymph
				nodes (e.g. meat from
				infected camels and
				buffaloes)
Screwworm, Cochliomyia	Cochliomyia hominivorax	Skin and	Visual	Direct contact with fly
	(family Calliphoridae)	wounds		-
Chigoe flea	Tunga penetrans	Subcutaneous	Physical	
		tissue	examination	
Human botfly	Dermatobia hominis	Subcutaneous	Physical	Mosquitoes and biting
		tissue	examination	flies

Levels of infectiousness: Helminth eggs contained in wastewater, sewage sludge or human excreta are not always infectious i.e. able to cause the disease helminthiasis. Fertilized eggs and unfertilized eggs can exist side by side. Unfertilized eggs are identifiable under the microscope by their elongated shape. No larvae can hatch from these kinds of eggs. Therefore, unfertilized eggs do not pose a danger to human health.

In the case of Ascaris lumbricoides (giant roundworm), which has been considered the most resistant and common helminth type, eggs are fertilized and deposited in the soil opposing to desiccation but are, at this stage of development, very sensitive to environmental temperatures: The reproduction of a fertilized egg within the eggshell develops at an environmental soil temperature about 25 °C which is lower than the body temperature of the host (i.e. 37 °C for humans)⁵.

However, development of the larvae in the egg stops at temperatures below $15.5\,^{\circ}\mathrm{C}$ and eggs cannot survive temperatures much above $38\,^{\circ}\mathrm{C}$. If the temperature is around $25\,^{\circ}\mathrm{C}$, the infectiousness occurs after nearly 10 days of incubation. 1,4,18 Finally, after 2 to 4 weeks in moist soil at optimal temperature and oxygen levels, the embryo develops into an infective larva, named "second-stage larva". This larva has the ability to get out of the egg, hatch in the small intestine and migrate to different organs. These infective larvae (or "infective eggs") may remain possible in soil more than a years or longer 5 .

Indicator organism: Helminth eggs (or ova) are a good indicator organism to assess the safety of sanitation and reuse systems because they are the most environmentally resistant pathogens of all pathogens (viruses, bacteria, protozoa and helminths)

and can in extreme cases survive for several years in soil¹⁵. Therefore, the presence or absence of viable helminth eggs ("viable helminth egg" means that a larva would be able to hatch from the egg) in a sample of dried fecal matter, compost or fecal sludge is often used as an indicator to assess the efficiency of diverse wastewater and sludge treatment processes in terms of pathogen removal.

In particular, the number of viable Ascaris eggs is often taken as an indicator organism for all helminth eggs in treatment processes as they are very common in many parts of the world and relatively easy to identify under the microscope. However, the exact inactivation characteristics may vary for different types of helminth eggs.¹

Conclusion

The review study concludes helminths classification and its impact on human beings. This study clearly concluded the helminths like flukes (Trematodes), Tapeworms (Cestodes) and Roundworms and their mode of transmission in humans. Helminthiasis is of chronic disease which causes more morbidity. Based on the nature of the species, helminths drugs can be used for the treatment of helminthiasis.

The Anthelmintics drug treatment must be used in chemotherapy programmes in those regions where clinical support is sparse and where drugs are very well tolerated in humans. For the last few years a small quantity of drugs especially ivermectin, albendazole, piperazine, emodepside have addressed the need whereas ivermectin has been hugely successful both in veterinary and tropical medicine.

References

1. Alouini Z. and Jemli M., Destruction of helminth eggs by photosensitized porphyrin, *Journal of Environmental Monitoring*, **3**, 548–551 (2001)

- 2. Amin O.M., Seasonal prevalence of intestinal parasites in the United States during 2000, *Am. J. Trop. Med. Hyg.*, **66(6)**, 799–803 (2002)
- 3. Bogitsh Burton J., Carter Clint E. and Oeltmann Thomas N., General Characteristics of the Nematoda (Chapter 15), Intestinal Nematodes (Chapter 16), Human Parasitology, UK, Academic Press, 269–345 (2012)
- 4. Boorom K.F., Smith H., Nimri L., Viscogliosi E., Spanakos G., Parkar U., Li L.H., Zhou X.N., Ok U.Z., Leelayoova S. and Jones M.S., Oh my aching gut: irritable bowel syndrome, Blastocystis and asymptomatic infection, *Parasit Vectors*, **1**(1), doi:10.1186/1756-3305-1-40 (**2008**)
- 5. Capizzi-Banas S., Deloge M., Remy M. and Schwartzbrod J., Liming as an advanced treatment for sludge sanitisation: helminth eggs elimination Ascaris eggs as model, *Water Research*, **38**(14–15), 3251–3258, doi:10.1016/j.watres.2004.04.015 (2004)
- 6. Montresor A., Crompton D.W.T., Gyorkos T.W. and Savioli L., Helminth control in school- age children, World Health Organization, Geneva, Switzerland (2002)
- 7. Haque R., Huston C.D. and Hughes M., Amoebiasis, *New England Journal Medicine*, **348**, 1565-1573 (**2003**)
- 8. El Safadi D., Gaayeb L., Meloni D., Cian A., Poirier P., Wawrzyniak I., Delbac F., Dabboussi F., Delhaes L., Seck M., Hamze M., Riveau G. and Viscogliosi E., Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide, *BMC Infect. Dis.*, **14**, 164, doi:10.1186/1471-2334-14-164 (**2014**)
- 9. Feachem R., Bradley D., Garelick H. and Mara D., Sanitation and Disease: Health Aspects of Excreta and Wastewater Management, John Wiley and Sons, New York, NY (1983)
- 10. Flegr J., Prandota J., Sovičková M. and Israili Z.H., Toxoplasmosis—a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries, *PLoS ONE*, **9(3)**, e90203 (**2014**)
- 11. Cox F.E.G., History of Human Parasitology, *Clinical Microbiology Reviews*, **15**(**4**), 595-612 (**2002**)

- 12. Dobson Andy, Lafferty Kevin D., Kuris Armand M., Hechinger Ryan F. and Jetz Walter, How many parasites? How many hosts?, *PNAS*, doi: 10.1073/pnas.0803232105 (2008)
- 13. Jimenez B., Helminth ova removal from wastewater for agriculture and aquaculture reuse, *Water Science & Technology*, **55(1–2)**, 485–493, doi:10.2166/wst.2007.046 (**2007**)
- 14. Jirillo E., Magrone T. and Miragliotta G., Immunomodulation by Parasitic Helminths and its Therapeutic Exploitation, In Pineda M.A. and Harnett W., eds., Immune Response to Parasitic Infections, Bentham eBooks, doi:10.2174/97816080598501140 201, 175-212 (2014)
- 15. Maya C., Torner-Morales F.J., Lucario E.S., Hernández E. and Jiménez B., Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, pH and dryness, *Water Research*, **46(15)**, 4770–4782, doi:10.1016/j. watres.2012.06.014 **(2012)**
- 16. Schmidt G.D. and Roberts L.S., Foundations of Parasitology, 3rd ed., Times Mirror, Mosby College Publishers, St Louis (**1985**)
- 17. Pappas G., Roussos N. and Falagas M.E., Toxoplasmosis snapshots: global status of Toxoplasma gondiiseroprevalence and implications for pregnancy and congenital toxoplasmosis, *International Journal for Parasitology*, **39(12)**, 1385–94, doi:10.1016/j.ijpara.2009.04.003 (**2009**)
- 18. Roberts T., Stark D., Harkness J. and Ellis J., Update on the pathogenic potential and treatment options for Blastocystissp, *Gut Pathog.*, **6**, 17, doi:10.1186/1757-4749-6-17 (**2014**)
- 19. Bogitsh B.J. and Cheng T.C., Human Parasitology, WB Saunders, Philadelphia (1990)
- 20. Yılmaz Hasan and Gödekmerdan Ahmet, Human fasciolosis in Van province, Turkey, *Acta Tropica*, **92(2)**, doi:10.1016/j.acta tropica.2004.04.009 (**2004**)
- 21. WHO, Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 4 Excreta and Greywater Use in Agriculture, 3rd ed., Geneva, World Health Organization (**2006**).

(Received 16th December 2019, accepted 03rd March 2020)