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Abstract 
The climate change modelling directly affects the 

hydrological water management systems. Accurate 

prediction of the rainfall is crucial for ensuring optimal 

water quality and supporting aquatic ecosystems. This 

study evaluates the predictive capability of machine 

learning models M5P tree and linear regression for 

estimating the monthly rainfall. Seven key climatic and 

metrological drivers including ENSO, IOD, NAO, 

PDO, AMO, Tmax and Tmin, were employed as input 

variables to analyse the global teleconnection patterns.  

 

Among the models tested, the M5P tree model exhibited 

the best predictive performance, achieving correlation 

coefficient (CC) values for calibration and validation 

datasets respectively. In this study, the potential of 

climate data and advanced machine learning models is 

explored for accurate monthly rainfall prediction for 

irrigation planning and, management of water 

resources in the selected region. 
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Introduction 
Prediction of rainfall is a non-linear, complex hydrological 

process for agriculture, water resource management and 

disaster preparedness1. To analyse, the insights of hybrid and 

data driven machine learning help to develop reliable and 

accurate prediction models and allow disaster management 

authorities to prepare for flood or drought events3. 

Traditional statistical models, particularly linear regression 

(LR), have long been employed for rainfall prediction 

because of their interpretability and computational 

simplicity. However, these methods use for nonlinear and 

regime-dependent relationships between climatic indices 

and rainfall. In machine learning approaches, M5P model 

tree can partition data into homogeneous subsets and fit 

localized linear models, making them better suited to 

represent climate interactions. This research study compares 

the performance of LR and M5P model in predicting 

monthly rainfall using climate indices, rainfall and 

temperature as predictors. The research closely aligns with 

sustainable development goals no. 13 for climate action. 

This work aims to provide a smart climate forecasting using 

machine learning approaches for climate services. 
 

Climatic Drivers and Data Sources: Rainfall variability 

requires examining the influence of large-scale climatic 

oscillations that interact with atmospheric and oceanic 

systems worldwide. These oscillations, often referred to as 

climate teleconnections, describe recurrent and persistent 

patterns of climate variability and operate over time scales 

ranging from months to decades. In this study, climatic 

indices such as Niño 3.4 (ENSO), Indian Ocean Dipole 

(IOD), North Atlantic Oscillation (NAO), Pacific Decadal 

Oscillation (PDO) and Atlantic Multidecadal Oscillation 

(AMO) were selected as predictors to capture the influencing 

rainfall patterns. The climate indices have a distinct physical 

basis, spatial domain and temporal variability, yet their 

combined effect often determines regional precipitation 

anomalies. 

 

Niño 3.4 (ENSO Indicator): The ENSO phenomenon is 

varying from 2 to 7 years based on the seasonal and monthly 

rainfall prediction The El Niño–Southern Oscillation 

(ENSO) is a phenomenon in the tropics, significantly 

influencing precipitation, temperature and extreme weather 

events. The Niño 3.4 index, which represents sea surface 

temperature anomalies region 5°N–5°S and 170°W–120°W 

in the central equatorial Pacific, serves as a key indicator of 

ENSO conditions. Positive anomalies in this index indicate 

El Niño conditions, typically associated with suppressed 

monsoon rainfall in South Asia, while negative anomalies 

(La Niña) often bring enhanced rainfall to the region9. 

 

ENSO influences rainfall patterns through alterations in the 

Walker circulation, atmospheric convection and the 

positioning of tropical rainfall belts. Its effects extend 

beyond tropical regions, with teleconnections influencing 

subtropical and mid-latitude areas, altering storm tracks, 

snowpack formation and seasonal drought patterns6. The 

time scale of ENSO variability ranges from 2 to 7 years, 

making it a critical input for seasonal and monthly rainfall 

forecasting models6,9. The Niño 3.4 index is used for 

identifying El Niño and La Niña events. It reflects anomalies 

in the east-central tropical Pacific region. Monthly Niño 3.4 

index data, covering the period from 1870 to 2019, provide 

a long-term record for analyzing oceanic and climatic 

variability. 

 

Indian Ocean Dipole (IOD): The Indian Ocean Dipole 

(IOD) is also known as Indian Nino which represents 

perturbation in the region of Indian Ocean. This region 

largely effects the areas like Indian, East Africa etc. The IOD 

played vital role for effecting the hydrological cycle 

especially for the case of Indian Monsson depending upon 

different ENSO phase. In this, there are two existing phases 

like positive and negative phase warmer and colder phase. 

The data sets of monthly anomalies of IOD which is 
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spanning from 1984 to 2021 were obtained from National 

Oceanic and Atmospheric Administration (NOAA) database 

(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data

/dmi.long.data) 

 

North Atlantic Oscillation (NAO): In the North Atlantic 

Oscillation, the fluctuation in sea level pressure is with 

positive phase generally in the parts of southern Europe and 

North Africa, whereas its negative phase tends to reverse 

these anomalies4. But for Northern Hemisphere, NAO-

related shifts in atmospheric circulation patterns can 

influence rainfall even in remote regions. In the context of 

South Asia, the NAO has been linked to modulations in 

winter precipitation and certain aspects of the summer 

monsoon system through cross-hemispheric 

teleconnections4,7. 

 

Pacific Decadal Oscillation (PDO): The Pacific Decadal 

Oscillation (PDO) is a typical phase lasting 20 to 30 years8. 

PDO’s influence on rainfall operates through modulations in 

ENSO teleconnections, atmospheric pressure fields and the 

position of the Pacific jet stream. For instance, during a 

positive PDO phase, the impacts of El Niño events on North 

American and Asian rainfall are often amplified. This makes 

PDO an important low-frequency background signal that 

interacts with higher-frequency oscillations like ENSO8,10. 

 

Atlantic Multidecadal Oscillation (AMO): In this, 

periodicity of roughly 60–80 years is positive in AMO 

phases (warmer SSTs). SST anomalies influence rainfall 

primarily through alterations in the Hadley circulation and 

changes in tropical cyclone activity. The persistence of AMO 

phases means that their influence can set decadal-scale 

backgrounds for regional hydrological variability, thereby 

impacting agricultural productivity and water resource 

planning2,6. 

 

Data Sources and Compilation: Monthly historical 

datasets of rainfall and five climatic indices were compiled 

for multiple decades to train and to evaluate the forecasting 

models. Rainfall data were obtained from national 

meteorological services and global gridded datasets. 

Climatic indices were sourced from recognized repositories: 

Niño 3.4 from NOAA’s Climate Prediction Center, IOD 

from the Australian Bureau of Meteorology, NAO from 

NCAR’s Climate Analysis Section, PDO from JISAO and 

AMO from NOAA’s Earth System Research Laboratory. All 

datasets were standardized to a common monthly time step, 

missing values were interpolated linearly and anomalies 

were calculated relative to a baseline climatology to 

emphasize variability. 

 

Rationale for Predictor Selection: The selection of these 

five indices was based on their proven statistical linkages to 

rainfall variability across multiple regions, their coverage of 
different ocean basins and their complementary time scales. 

ENSO and IOD capture interannual variability, NAO 

primarily influences seasonal-to-interannual fluctuations; 

PDO and AMO represent low-frequency, decadal to 

multidecadal signals. Combining these predictors provides a 

multi-scale representation of global climate drivers, enabling 

models to better resolve both short-term fluctuations and 

long-term tendencies in rainfall patterns.  

 

Material and Methods 
In this study, two distinct predictive modeling approaches 

were implemented to estimate monthly rainfall from large-

scale climatic indices. The choice of models was driven by 

the need to compare the performance of a traditional 

statistical method with a more advanced machine learning 

approach, enabling an objective evaluation of their 

suitability for operational rainfall forecasting. 

 

Linear Regression (LR): Linear regression (LR) serves as 

a baseline statistical model, assuming a linear relationship 

between predictors (selected climate indices) and the target 

variable (monthly rainfall)13. Each predictor contributes 

additively to the predicted outcome, with a corresponding 

weight representing its influence. Despite its simplicity, LR 

is a valuable benchmark due to its interpretability, 

computational efficiency and widespread use in hydrological 

and climatological studies. 

 

M5P Model Tree: The M5P model tree is a hybrid machine 

learning technique that combines decision tree algorithms 

with localized linear regression models at the terminal 

nodes3. The algorithm recursively partitions the predictor 

space into smaller, more homogeneous regions, fitting a 

separate linear regression model within each terminal node. 

This structure enables the M5P model to capture both global 

trends and localized variations, making it particularly 

effective for modeling complex, nonlinear relationships such 

as those between climate indices and rainfall. 

 

Rationale for Model Selection: The selection of LR and 

M5P was intentional. LR provides a well-established and 

interpretable baseline that can reveal the overall influence of 

each climate index on rainfall. However, rainfall processes 

are often influenced by non-linear and interacting effects 

among climate drivers. This complexity motivated the 

inclusion of the M5P model tree, which can accommodate 

non-linearities without the need for explicit feature 

engineering. The hybrid nature of M5P combining decision 

tree segmentation with linear models, offers the potential to 

capture patterns that LR might overlook, especially when 

predictor-response relationships vary across different 

climatic regimes. 

 

Data Preparation and Preprocessing: The dataset 

comprised of monthly rainfall observations and 

contemporaneous values of the selected climatic indices 

include Niño 3.4, IOD, NAO, PDO and AMO, spanning 

multiple decades to capture a wide range of climate 

variability. Data quality checks were performed to address 

missing or erroneous entries, with gaps in climate indices 

filled via interpolation or alternative sources to maintain 
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temporal continuity. Rainfall and climate index values were 

temporally aligned to ensure correspondence within the 

same month and year, preventing biases in model 

performance. Feature scaling was applied for linear 

regression to standardize predictor ranges and support 

numerical stability, while it was unnecessary for tree-based 

models like M5P. 

 

Training and Testing Strategy: To simulate realistic 

forecasting conditions, the dataset was divided into training 

and testing subsets. The training set included earlier years of 

the record, while the testing set contained the most recent 

years. This split ensured that the model was evaluated on 

completely unseen data, reflecting the challenge of making 

predictions for future periods without knowledge of 

upcoming climate states. 

 

A key consideration in this study was that no lagged features 

were included. This means that the models were trained 

solely on contemporaneous values of the climate indices for 

each month’s rainfall prediction. The decision to exclude 

lagged predictors was guided by operational forecasting 

needs. Future rainfall predictions must rely only on climate 

index values known at the time of prediction, without 

assuming availability of future climate data. 

 

Model Implementation: For LR, the implementation 

involved estimating the coefficients of each climate index 

through a least-squares optimization procedure. The 

simplicity of this approach allows for rapid computation, 

making it suitable for operational use in resource-limited 

contexts. 

 
For M5P, the algorithm first constructed a decision tree by 

recursively splitting the data into subsets that minimized 

intra-node variance. At each terminal node, a local linear 

regression model was fitted to the observations within that 

node. This two-step approach enabled the model to capture 

piecewise linear patterns, adapting to variations in climate–

rainfall relationships across different subgroups of the data. 

Pruning was employed to avoid overfitting and model 

performance was validated using the testing set. 

 
Model Evaluation Metrics: To compare the predictive skill 

of LR and M5P, standard statistical performance metrics 

were employed such as: 

 

 Coefficient of Correlation (CC): To measure the 

variance in rainfall model. 

 Root Mean Square Error (RMSE): To assess the 

magnitude of prediction errors. 

 Mean Absolute Error (MAE): To evaluate the average 

magnitude of errors in a less sensitive manner to outliers 

compared to RMSE. 

 

The use of multiple metrics provided a comprehensive view 

of model performance, accounting for both accuracy and 

reliability. 

 

 
Figure 1: Scatter plots showing the predicted versus observed rainfall using the Linear Regression model  

for the testing datasets. 

 

Table 1 

Performance comparison of M5P and Linear Regression (LR) models in forecasting rainfall, showing training and 

testing metrics 

Models 

CC MAE RMSE SI NSE CC MAE RMSE SI NSE 

Training Testing 

M5P 0.7616 25.9738 50.6946 1.1817 0.5786 0.6515 28.2961 51.0526 1.2935 0.3919 

LR 0.4375 42.9063 70.2221 1.6369 0.1914 0.3359 41.6945 62.4801 1.5831 0.0893 
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Figure 2 : Scattered plots showing the predicted versus observed rainfall using the M5P model for the testing datasets. 

 

 
Figure 3: Times Series showing the predicted versus observed rainfall using the M5P model for the testing datasets. 

 
Figure 4: M5P model tree illustrating the partitioning of Farukhnagar minimum (Tmin) and maximum (Tmax) 

temperatures for predicting rainfall classes (LM 1, LM 2, LM 3) with corresponding sample counts and percentages. 
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Figure 5: Performance evaluation of LR and M5P tree 

 

 
Figure 6: Time series plots of Best M5P tree 

 

Results and Discussion 
Table 1 presents the performance of M5P and linear 

regression (LR) models for monthly rainfall prediction, 

using performances of each models. During the training 

phase, the M5P model demonstrated superior performance 

with a CC of 0.7616, indicating a strong correlation between 

observed and predicted rainfall, compared to 0.4375 for LR. 

The MAE and RMSE values of M5P (25.97 mm and 50.69 

mm) were substantially lower than those of LR (42.91 mm 

and 70.22 mm), reflecting higher predictive accuracy. 

Similarly, the NSE of 0.5786 for M5P was markedly higher 

than 0.1914 for LR, further confirming better model 

efficiency. In the testing phase, M5P maintained relatively 

robust performance with a CC of 0.6515 and NSE of 0.3919 

whereas LR showed poor generalization (CC = 0.3359, NSE 

= 0.0893). The MAE and RMSE for M5P in testing (28.30 

mm and 51.05 mm) remained lower than those of LR (41.69 

mm and 62.48 mm), indicating more reliable predictions on 

unseen data. The slight increase in errors for M5P during 

testing suggests minor overfitting, yet overall performance 

remained superior. 

 

These results highlight the advantage of tree-based models 
like M5P in capturing nonlinear relationships among 

climatic predictors whereas LR’s linear framework limits its 

predictive capability. Overall, M5P is better suited for 

monthly rainfall forecasting in the study region as 

corroborated by the closer alignment of predicted and 

observed values in the corresponding scatter plots (Figure 2). 

 

Conclusion 
The comparative evaluation confirms that the M5P model 

consistently outperforms linear regression in monthly 

rainfall forecasting. M5P demonstrates higher correlation 

with observed rainfall, lower MAE and RMSE values and 

superior Nash–Sutcliffe Efficiency, reflecting more accurate 

and reliable predictions. Its ability to capture complex, 

nonlinear interactions among multiple climatic drivers 

allows it to generalize effectively to unseen data, unlike the 

linear LR model. 

 

Although LR provides interpretability and simplicity, its 

predictive capability is limited by its linear framework. 

Slightly higher errors observed in testing for M5P indicate 

minor overfitting, but overall performance remains robust. 

These findings highlight the advantage of tree-based models 

in representing intricate teleconnections influencing regional 

rainfall. By integrating large-scale climate indices, M5P can 

serve as a dependable tool for operational rainfall prediction. 
Its robust performance supports the development of early-

warning systems for climate-resilient water management 

and agricultural planning. 
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 Figure 7: Performance evaluation of Best LR and M5P tree 

 

Overall, the study underscores the potential of nonlinear 

machine learning frameworks in enhancing the precision of 

rainfall forecasts. M5P emerges as a highly effective 

approach for practical, high-accuracy monthly rainfall 

prediction in the study region. 
 

A major innovation of this research is the utilization of 

satellite data both as input variables and as a reference for 

cross-validating extreme rainfall events. The strong 

correlations observed between satellite-derived predictors 

and ground-based rainfall data further reinforced this 

conclusion. Collectively, these results introduce a novel 

scientific framework for validating extreme rainfall events 

using remote sensing information, forming a two-tier 

validation approach not previously reported in existing 

studies. 
 

In addition, the study offers a practical advancement by 

demonstrating that monthly rainfall can be reliably predicted 

without the need for physical rain gauge networks. Given the 

substantial expenses and logistical difficulties of installing 

and maintaining such systems, particularly in remote or 

conflict-prone regions, the proven accuracy of satellite-
supported models has advantage like low-cost and scalable 

solution for hydrological assessment and rainfall 

monitoring. 
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