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Abstract

The climate change modelling directly affects the
hydrological water management systems. Accurate
prediction of the rainfall is crucial for ensuring optimal
water quality and supporting aquatic ecosystems. This
study evaluates the predictive capability of machine
learning models MSP tree and linear regression for
estimating the monthly rainfall. Seven key climatic and
metrological drivers including ENSO, 10D, NAO,
PDO, AMO, Ty and Twin, were employed as input
variables to analyse the global teleconnection patterns.

Among the models tested, the M5P tree model exhibited
the best predictive performance, achieving correlation
coefficient (CC) values for calibration and validation
datasets respectively. In this study, the potential of
climate data and advanced machine learning models is
explored for accurate monthly rainfall prediction for
irrigation planning and, management of water
resources in the selected region.
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Introduction

Prediction of rainfall is a non-linear, complex hydrological
process for agriculture, water resource management and
disaster preparedness'. To analyse, the insights of hybrid and
data driven machine learning help to develop reliable and
accurate prediction models and allow disaster management
authorities to prepare for flood or drought events?.
Traditional statistical models, particularly linear regression
(LR), have long been employed for rainfall prediction
because of their interpretability and computational
simplicity. However, these methods use for nonlinear and
regime-dependent relationships between climatic indices
and rainfall. In machine learning approaches, M5P model
tree can partition data into homogeneous subsets and fit
localized linear models, making them better suited to
represent climate interactions. This research study compares
the performance of LR and MS5P model in predicting
monthly rainfall using climate indices, rainfall and
temperature as predictors. The research closely aligns with
sustainable development goals no. 13 for climate action.
This work aims to provide a smart climate forecasting using
machine learning approaches for climate services.

Climatic Drivers and Data Sources: Rainfall variability
requires examining the influence of large-scale climatic
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oscillations that interact with atmospheric and oceanic
systems worldwide. These oscillations, often referred to as
climate teleconnections, describe recurrent and persistent
patterns of climate variability and operate over time scales
ranging from months to decades. In this study, climatic
indices such as Nifio 3.4 (ENSO), Indian Ocean Dipole
(IOD), North Atlantic Oscillation (NAO), Pacific Decadal
Oscillation (PDO) and Atlantic Multidecadal Oscillation
(AMO) were selected as predictors to capture the influencing
rainfall patterns. The climate indices have a distinct physical
basis, spatial domain and temporal variability, yet their
combined effect often determines regional precipitation
anomalies.

Nifio 3.4 (ENSO Indicator): The ENSO phenomenon is
varying from 2 to 7 years based on the seasonal and monthly
rainfall prediction The El Nifo—Southern Oscillation
(ENSO) is a phenomenon in the tropics, significantly
influencing precipitation, temperature and extreme weather
events. The Nifio 3.4 index, which represents sea surface
temperature anomalies region 5°N—-5°S and 170°W-120°W
in the central equatorial Pacific, serves as a key indicator of
ENSO conditions. Positive anomalies in this index indicate
El Nifio conditions, typically associated with suppressed
monsoon rainfall in South Asia, while negative anomalies
(La Nifia) often bring enhanced rainfall to the region’.

ENSO influences rainfall patterns through alterations in the
Walker circulation, atmospheric convection and the
positioning of tropical rainfall belts. Its effects extend
beyond tropical regions, with teleconnections influencing
subtropical and mid-latitude areas, altering storm tracks,
snowpack formation and seasonal drought patterns®. The
time scale of ENSO variability ranges from 2 to 7 years,
making it a critical input for seasonal and monthly rainfall
forecasting models®®. The Nifio 3.4 index is used for
identifying El Nifio and La Nifia events. It reflects anomalies
in the east-central tropical Pacific region. Monthly Nifio 3.4
index data, covering the period from 1870 to 2019, provide
a long-term record for analyzing oceanic and climatic
variability.

Indian Ocean Dipole (IOD): The Indian Ocean Dipole
(IOD) is also known as Indian Nino which represents
perturbation in the region of Indian Ocean. This region
largely effects the areas like Indian, East Africa etc. The IOD
played vital role for effecting the hydrological cycle
especially for the case of Indian Monsson depending upon
different ENSO phase. In this, there are two existing phases
like positive and negative phase warmer and colder phase.
The data sets of monthly anomalies of 10D which is
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spanning from 1984 to 2021 were obtained from National
Oceanic and Atmospheric Administration (NOAA) database
(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data
/dmi.long.data)

North Atlantic Oscillation (NAO): In the North Atlantic
Oscillation, the fluctuation in sea level pressure is with
positive phase generally in the parts of southern Europe and
North Africa, whereas its negative phase tends to reverse
these anomalies*. But for Northern Hemisphere, NAO-
related shifts in atmospheric circulation patterns can
influence rainfall even in remote regions. In the context of
South Asia, the NAO has been linked to modulations in
winter precipitation and certain aspects of the summer
monsoon system through cross-hemispheric
teleconnections®’.

Pacific Decadal Oscillation (PDO): The Pacific Decadal
Oscillation (PDO) is a typical phase lasting 20 to 30 years®.
PDO’s influence on rainfall operates through modulations in
ENSO teleconnections, atmospheric pressure fields and the
position of the Pacific jet stream. For instance, during a
positive PDO phase, the impacts of El Nifio events on North
American and Asian rainfall are often amplified. This makes
PDO an important low-frequency background signal that
interacts with higher-frequency oscillations like ENSO®10,

Atlantic Multidecadal Oscillation (AMO): In this,
periodicity of roughly 60-80 years is positive in AMO
phases (warmer SSTs). SST anomalies influence rainfall
primarily through alterations in the Hadley circulation and
changes in tropical cyclone activity. The persistence of AMO
phases means that their influence can set decadal-scale
backgrounds for regional hydrological variability, thereby
impacting agricultural productivity and water resource
planning?9.

Data Sources and Compilation: Monthly historical
datasets of rainfall and five climatic indices were compiled
for multiple decades to train and to evaluate the forecasting
models. Rainfall data were obtained from national
meteorological services and global gridded datasets.
Climatic indices were sourced from recognized repositories:
Nifio 3.4 from NOAA’s Climate Prediction Center, IOD
from the Australian Bureau of Meteorology, NAO from
NCAR’s Climate Analysis Section, PDO from JISAO and
AMO from NOAA’s Earth System Research Laboratory. All
datasets were standardized to a common monthly time step,
missing values were interpolated linearly and anomalies
were calculated relative to a baseline climatology to
emphasize variability.

Rationale for Predictor Selection: The selection of these
five indices was based on their proven statistical linkages to
rainfall variability across multiple regions, their coverage of
different ocean basins and their complementary time scales.
ENSO and IOD capture interannual variability, NAO
primarily influences seasonal-to-interannual fluctuations;
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PDO and AMO represent low-frequency, decadal to
multidecadal signals. Combining these predictors provides a
multi-scale representation of global climate drivers, enabling
models to better resolve both short-term fluctuations and
long-term tendencies in rainfall patterns.

Material and Methods

In this study, two distinct predictive modeling approaches
were implemented to estimate monthly rainfall from large-
scale climatic indices. The choice of models was driven by
the need to compare the performance of a traditional
statistical method with a more advanced machine learning
approach, enabling an objective evaluation of their
suitability for operational rainfall forecasting.

Linear Regression (LR): Linear regression (LR) serves as
a baseline statistical model, assuming a linear relationship
between predictors (selected climate indices) and the target
variable (monthly rainfall)'3>. Each predictor contributes
additively to the predicted outcome, with a corresponding
weight representing its influence. Despite its simplicity, LR
is a valuable benchmark due to its interpretability,
computational efficiency and widespread use in hydrological
and climatological studies.

MSP Model Tree: The MSP model tree is a hybrid machine
learning technique that combines decision tree algorithms
with localized linear regression models at the terminal
nodes®. The algorithm recursively partitions the predictor
space into smaller, more homogeneous regions, fitting a
separate linear regression model within each terminal node.
This structure enables the MSP model to capture both global
trends and localized variations, making it particularly
effective for modeling complex, nonlinear relationships such
as those between climate indices and rainfall.

Rationale for Model Selection: The selection of LR and
MS5P was intentional. LR provides a well-established and
interpretable baseline that can reveal the overall influence of
each climate index on rainfall. However, rainfall processes
are often influenced by non-linear and interacting effects
among climate drivers. This complexity motivated the
inclusion of the M5P model tree, which can accommodate
non-linearities without the need for explicit feature
engineering. The hybrid nature of M5P combining decision
tree segmentation with linear models, offers the potential to
capture patterns that LR might overlook, especially when
predictor-response relationships vary across different
climatic regimes.

Data Preparation and Preprocessing: The dataset
comprised of monthly rainfall observations and
contemporaneous values of the selected climatic indices
include Nifio 3.4, IOD, NAO, PDO and AMO, spanning
multiple decades to capture a wide range of climate
variability. Data quality checks were performed to address
missing or erroneous entries, with gaps in climate indices
filled via interpolation or alternative sources to maintain
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temporal continuity. Rainfall and climate index values were
temporally aligned to ensure correspondence within the
same month and year, preventing biases in model
performance. Feature scaling was applied for linear
regression to standardize predictor ranges and support
numerical stability, while it was unnecessary for tree-based
models like M5P.

Training and Testing Strategy: To simulate realistic
forecasting conditions, the dataset was divided into training
and testing subsets. The training set included earlier years of
the record, while the testing set contained the most recent
years. This split ensured that the model was evaluated on
completely unseen data, reflecting the challenge of making
predictions for future periods without knowledge of
upcoming climate states.

A key consideration in this study was that no lagged features
were included. This means that the models were trained
solely on contemporaneous values of the climate indices for
each month’s rainfall prediction. The decision to exclude
lagged predictors was guided by operational forecasting
needs. Future rainfall predictions must rely only on climate
index values known at the time of prediction, without
assuming availability of future climate data.

Model Implementation: For LR, the implementation
involved estimating the coefficients of each climate index
through a least-squares optimization procedure. The
simplicity of this approach allows for rapid computation,
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making it suitable for operational use in resource-limited
contexts.

For M5P, the algorithm first constructed a decision tree by
recursively splitting the data into subsets that minimized
intra-node variance. At each terminal node, a local linear
regression model was fitted to the observations within that
node. This two-step approach enabled the model to capture
piecewise linear patterns, adapting to variations in climate—
rainfall relationships across different subgroups of the data.
Pruning was employed to avoid overfitting and model
performance was validated using the testing set.

Model Evaluation Metrics: To compare the predictive skill
of LR and MS5P, standard statistical performance metrics
were employed such as:

o Coefficient of Correlation (CC): To measure the
variance in rainfall model.

e Root Mean Square Error (RMSE): To assess the
magnitude of prediction errors.

e Mean Absolute Error (MAE): To evaluate the average
magnitude of errors in a less sensitive manner to outliers
compared to RMSE.

The use of multiple metrics provided a comprehensive view
of model performance, accounting for both accuracy and
reliability.
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Figure 1: Scatter plots showing the predicted versus observed rainfall using the Linear Regression model
for the testing datasets.

Table 1
Performance comparison of M5P and Linear Regression (LR) models in forecasting rainfall, showing training and
testing metrics

cC | MAE | RMSE | sI | NSE cC | MAE |RMSE| sSI | NSE
Models Training Testing
M5P | 0.7616 | 25.9738 | 50.6946 | 1.1817 | 05786 | 0.6515 | 28.2961 | 51.0526 | 1.2935 | 0.3919
LR 0.4375 | 42.9063 | 70.2221 | 1.6369 | 0.1914 | 0.3359 | 41.6945 | 62.4801 | 1.5831 | 0.0893
https://doi.org/10.25303/192da070076 72
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Figure 2 : Scattered plots showing the predicted versus observed rainfall using the MS5P model for the testing datasets.
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Figure 3: Times Series showing the predicted versus observed rainfall using the M5P model for the testing datasets.
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Figure 4: MSP model tree illustrating the partitioning of Farukhnagar minimum (Tmin) and maximum (Tmax)
temperatures for predicting rainfall classes (LM 1, LM 2, LM 3) with corresponding sample counts and percentages.
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Model Performance Metrics Comparison
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Figure 5: Performance evaluation of LR and MS5P tree
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Figure 6: Time series plots of Best MSP tree

Results and Discussion

Table 1 presents the performance of MS5P and linear
regression (LR) models for monthly rainfall prediction,
using performances of each models. During the training
phase, the M5P model demonstrated superior performance
with a CC of 0.7616, indicating a strong correlation between
observed and predicted rainfall, compared to 0.4375 for LR.
The MAE and RMSE values of M5P (25.97 mm and 50.69
mm) were substantially lower than those of LR (42.91 mm
and 70.22 mm), reflecting higher predictive accuracy.
Similarly, the NSE of 0.5786 for M5P was markedly higher
than 0.1914 for LR, further confirming better model
efficiency. In the testing phase, M5P maintained relatively
robust performance with a CC of 0.6515 and NSE of 0.3919
whereas LR showed poor generalization (CC = 0.3359, NSE
= 0.0893). The MAE and RMSE for M5P in testing (28.30
mm and 51.05 mm) remained lower than those of LR (41.69
mm and 62.48 mm), indicating more reliable predictions on
unseen data. The slight increase in errors for M5P during
testing suggests minor overfitting, yet overall performance
remained superior.

These results highlight the advantage of tree-based models
like MS5P in capturing nonlinear relationships among
climatic predictors whereas LR’s linear framework limits its
predictive capability. Overall, M5P is better suited for
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monthly rainfall forecasting in the study region as
corroborated by the closer alignment of predicted and
observed values in the corresponding scatter plots (Figure 2).

Conclusion

The comparative evaluation confirms that the M5P model
consistently outperforms linear regression in monthly
rainfall forecasting. M5P demonstrates higher correlation
with observed rainfall, lower MAE and RMSE values and
superior Nash—Sutcliffe Efficiency, reflecting more accurate
and reliable predictions. Its ability to capture complex,
nonlinear interactions among multiple climatic drivers
allows it to generalize effectively to unseen data, unlike the
linear LR model.

Although LR provides interpretability and simplicity, its
predictive capability is limited by its linear framework.
Slightly higher errors observed in testing for M5P indicate
minor overfitting, but overall performance remains robust.
These findings highlight the advantage of tree-based models
in representing intricate teleconnections influencing regional
rainfall. By integrating large-scale climate indices, M5P can
serve as a dependable tool for operational rainfall prediction.
Its robust performance supports the development of early-
warning systems for climate-resilient water management
and agricultural planning.
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Figure 7: Performance evaluation of Best LR and MSP tree

Overall, the study underscores the potential of nonlinear
machine learning frameworks in enhancing the precision of
rainfall forecasts. M5P emerges as a highly effective
approach for practical, high-accuracy monthly rainfall
prediction in the study region.

A major innovation of this research is the utilization of
satellite data both as input variables and as a reference for
cross-validating extreme rainfall events. The strong
correlations observed between satellite-derived predictors
and ground-based rainfall data further reinforced this
conclusion. Collectively, these results introduce a novel
scientific framework for validating extreme rainfall events
using remote sensing information, forming a two-tier
validation approach not previously reported in existing
studies.

In addition, the study offers a practical advancement by
demonstrating that monthly rainfall can be reliably predicted
without the need for physical rain gauge networks. Given the
substantial expenses and logistical difficulties of installing
and maintaining such systems, particularly in remote or
conflict-prone regions, the proven accuracy of satellite-
supported models has advantage like low-cost and scalable
solution for hydrological assessment and rainfall
monitoring.
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